CEA
Herschel Gould Belt Survey Archive
Herschel Gould Belt Survey Archive

Spatial distribution of Aquila prestellar dense cores (blue triangles) over (the curvelet component of) the Herschel column density map.

Herschel provides a unique opportunity to study the earliest stages of star formation. What is the origin of the stellar initial mass function (IMF) ? This issue is central in local star formation research and for understanding whether the IMF is truly universal or is likely to depend on metallicity, pressure, or temperature. As prestellar cores and young (Class 0) protostars emit the bulk of their luminosity at ~80-400 microns, the Herschel imaging instruments SPIRE and PACS are ideal for taking a census of such objects down to ~0.01-0.1 Msun in the nearby (0.5 kpc) molecular cloud complexes. We propose an extensive imaging survey of the densest portions of the Gould Belt with SPIRE at 250-500 and PACS at 110-170 microns down to a 5-sigma column sensitivity NH2~1021 cm^-2 or Av~1. Our goal is to make a complete, homogeneous mapping of the Av>3 regions with SPIRE and of the Av>6 regions with PACS, and representative areas at Av~1-3 levels with both instruments. The survey sensitivity is well matched to the expected cirrus confusion limit, so we should detect structures throughout the maps. The target clouds span a range of physical conditions, from active, cluster-forming complexes to quiescent regions with lower star formation activity. We should detect hundreds Class 0 protostars and thousands prestellar condensations in the entire ~145 deg^2 SPIRE survey, i.e. ~10 times more cold objects than already identified from the ground. These numbers should allow us to derive an accurate prestellar core mass function. The temperature and density structures of the nearest ( 0.2 kpc) cores will be resolved, revealing the initial conditions for individual protostellar collapse. The large spatial dynamic range of the proposed survey will probe the link between diffuse cirrus-like structures and compact self-gravitating cores. Our main scientific goal is to elucidate the physical mechanisms for the formation of prestellar cores out of the diffuse medium, crucial for understanding the origin of stellar masses.

ACKNOWLEDGEMENTS:

Every work using Herschel Gould Belt survey data should include the following acknowledgement text:

This research has made use of data from the Herschel Gould Belt survey (HGBS) project (http://gouldbelt-herschel.cea.fr). The HGBS is a Herschel Key Programme jointly carried out by SPIRE Specialist Astronomy Group 3 (SAG 3), scientists of several institutes in the PACS Consortium (CEA Saclay, INAF-IFSI Rome and INAF-Arcetri, KU Leuven, MPIA Heidelberg), and scientists of the Herschel Science Center (HSC).

and cite the introductory paper of the Herschel Gould Belt survey by André et al. (2010, A&A, 518, L102).

NOTE ON COLUMN DENSITY MAP PRODUCTS:

See Roy et al. (2014, A&A, 562, A138) for dust opacity assumptions 
and a discussion of uncertainties.

The « hires » column density map products (18.2 arcsec resolution) were
produced using the procedure described in Appendix A of Palmeirim et al. (2013, A&A, 550, A38).

 
Regions

PACS  70 µm images

PACS 100µm images PACS 160µm images SPIRE
250µm images
SPIRE
350µm images
SPIRE
500µm images

Catalogs of dense cores

Column density and temperature maps

+ filament skeleton maps

References
Acknowledgements
Aquila aquilaM2-070   aquilaM2-160 aquilaM2-250 aquilaM2-350 aquilaM2-500

HGBS_aquilaM2_observed_core_catalog.txt

HGBS_aquilaM2_derived_core_catalog.txt

HGBS_aquilaM2_core_blowups.pdf

HGBS_aquilaM2_core_SEDs.pdf

HGBS_aquilaM2_column_density_map.fits.gz

HGBS_aquilaM2_hires_column_density_map.fits.gz

HGBS_aquilaM2_dust_temperature_map.fits.gz

HGBS_aquilaM2_skeleton_map.fits.gz

Könyves+2015  (A&A, 584, A91)

Bontemps+2010 (A&A, 518, L85)

André et al. 2010 (A&A, 518, L102)

Arzoumanian+ 2019 (A&A, 621, A42)

Cepheus            

Expected availability: October 2020

Contact: James Di Francesco

HGBS_cep1157_column_density_map.fits

HGBS_cep1157_hires_column_density_map.fits.gz

HGBS_cep1157_dust_temperature_map.fits.gz

HGBS_cep1172_column_density_map.fits

HGBS_cep1172_hires_column_density_map.fits.gz

HGBS_cep1172_dust_temperature_map.fits.gz

HGBS_cep1228_column_density_map.fits

HGBS_cep1228_hires_column_density_map.fits.gz

HGBS_cep1228_dust_temperature_map.fits.gz

HGBS_cep1241_column_density_map.fits

HGBS_cep1241_hires_column_density_map.fits.gz

HGBS_cep1241_dust_temperature_map.fits.gz

HGBS_cep1251_column_density_map.fits

HGBS_cep1251_hires_column_density_map.fits.gz

HGBS_cep1251_dust_temperature_map.fits.gz

Di Francesco et al. 2020, ApJ, in press

Chamaleon chamI-070   chamI-160 chamI-250 chamI-350 chamI-500  

chamI-coldens

HGBS_chamI_hires_column_density_map.fits.gz

chamI-Tdust

chamII-coldens

HGBS_chamII_III_hires_column_density_map.fits.gz

chamII-Tdust

chamIII-coldens

chamIII-Tdust

Winston+2012 (A&A, 545, A145)

Kospal+2012 (A&A, 541, A71)

Alves de Oliveira+ 2014 (A&A, 568, A98)

Coalsack               Expected: December 2020  
Corona Australis craNS-070   craNS-160 craNS-250 craNS-350 craNS-500

HGBS_craNS_observed_core_catalog.txt

HGBS_craNS_derived_core_catalog.txt

HGBS_craNS_core_blowups.pdf

HGBS_craNS_core_SEDs.pdf

HGBS_craNS_column_density_map.fits.gz

HGBS_craNS_hires_column_density_map.fits.gz

HGBS_craNS_dust_temperature_map.fits.gz

Bresnahan+ 2018 (A&A, 615, A125)

Sicilia-Aguilar et al.  2013 (551, A34)

IC5146 ic5146-070   ic5146-160 ic5146-250 ic5146-350 ic5146-500  

HGBS_ic5146_column_density_map.fits.gz

HGBS_ic5146_hires_column_density_map.fits.gz

HGBS_ic5146_dust_temperature_map.fits.gz

HGBS_ic5146_skeleton_map.fits.gz

Arzoumanian+2011 (A&A, 529, L6)

Arzoumanian+2019 (A&A, 621, A42)

Lupus lupusI-070   lupusI-160 lupusI-250 lupusI-350 lupusI-500

HGBS_lupI_observed_core_catalog.txt

HGBS_lupI_derived_core_catalog.txt

HGBS_lupI_core_blowups_seds.pdf

HGBS_lupIII_observed_core_catalog.txt

HGBS_lupIII_derived_core_catalog.txt

HGBS_lupIII_core_blowups_seds.pdf

HGBS_lupIV_observed_core_catalog.txt

HGBS_lupIV_derived_core_catalog.txt

HGBS_lupIV_core_blowups_seds.pdf

HGBS_lupI_column_density_map.fits.gz

HGBS_lupI_hires_column_density_map.fits.gz

HGBS_lupI_dust_temperature_map.fits.gz

HGBS_lupIII_column_density_map.fits.gz

HGBS_lupIII_hires_column_density_map.fits.gz

HGBS_lupIII_dust_temperature_map.fits.gz

HGBS_lupIV_column_density_map.fits.gz

HGBS_lupIV_hires_column_density_map.fits.gz

HGBS_lupIV_dust_temperature_map.fits.gz

Rygl et al. 2013 (A&A, 549, L1)

Benedettini+2018 (A&A, 619, A52)

Musca              

HGBS_musca_column_density_map.fits.gz

HGBS_musca_hires_column_density_map.fits.gz

HGBS_musca_dust_temperature_map.fits.gz

N. Cox et al. 2016 (A&A, 590, A110)

Ophiuchus

& L1689B

L1689B-070   L1689B-160 L1689B-250 L1689B-350 L1689B-500

 

HGBS_ophiuchus_observed_core_catalog.txt

HGBS_ophiuchus_derived_core_catalog.txt

HGBS_oph_l1688_column_density_map.fits.gz

HGBS_oph_l1688_hires_column_density_map.fits.gz

HGBS_oph-L1688_dust_temperature_map.fits.gz

HGBS_oph_l1688_skeleton_map.fits.gz

L1689B-coldens

L1689B-Tdust

Ladjelate+2020 (A&A, 638, A74)

Arzoumanian+2019 (A&A, 621, A42)

A. Roy et al. 2014 (A&A, 562, A138)

Orion A

orionA-C-070

orionA-S-070

 

orionA-C-160

orionA-S-160

orionA-C-250

orionA-S-250

orionA-C-350

orionA-S-350

orionA-C-500

orionA-S-500

Expected availability (Orion A S): December 2020

Contact: Danae Polychroni

Expected: December 2020

A. Roy et al. 2013 (ApJ, 763, 55)

Polychroni+2013 (ApJ, 777, L33)

Orion B orionB-S-070   orionB-S-160 orionB-250 orionB-350 orionB-500

HGBS_orionb_observed_core_catalog.txt

HGBS_orionb_derived_core_catalog.txt

HGBS_orionb_core_blowups.pdf

HGBS_orionb_core_SEDs.pdf

HGBS_orionB_column_density_map.fits.gz

HGBS_orionB_hires_column_density_map.fits.gz

HGBS_orionB_dust_temperature_map.fits.gz

HGBS_orionB_skeleton_map.fits.gz

Schneider+2013 (ApJ, 766, L17)

Könyves+2020 (A&A, 635, A34)

Arzoumanian+2019 (A&A, 621, A42)

Perseus perseus-070   perseus-160 perseus-250 perseus-350 perseus-500

Expected availability: October 2020

Contact: Stefano Pezzuto

HGBS_perseus_column_density_map.fits.gz

HGBS_perseus_hires_column_density_map.fits.gz

HGBS_perseus_dust_temperature_map.fits.gz

Pezzuto et al. 2012 (A&A, 547, A54)

Pezzuto+2020, A&A, in press (arXiv:2010.00006)

Sadavoy et al. 2012 (A&A, 540, A10)

Sadavoy et al. 2014 (ApJ, 787, L18)

Pipe nebula

and B68

pipe-070

b68-070

 

pipe-160

b68-160

pipe-250

b68-250

pipe-350

b68-350

pipe-500

b68-500

Expected availability: December 2020

Contact: Arabindo Roy

HGBS_pipe_column_density_map.fits.gz

HGBS_pipe_hires_column_density_map.fits.gz

HGBS_pipe_dust_temperature_map.fits.gz

b68-coldens

b68-Tdust

Peretto et al. 2012 (A&A, 541, A63)

A. Roy et al. 2014 (A&A, 562, A138) 

Roy et al. 2020

Polaris polaris-070 polaris-100 polaris-160 polaris-250 polaris-350 polaris-500  

HGBS_polaris_column_density_map.fits.gz

HGBS_polaris_hires_column_density_map.fits.gz

HGBS_polaris_dust_temperature_map.fits.gz

HGBS_polaris_skeleton_map.fits.gz

Menshchikov+2010 (A&A, 518, L103)

Miville-Deschênes et al. 2010 (A&A, 518, L104)

Ward-Thompson +2010 (A&A, 518, L93)

André et al. 2010 (A&A, 518, L102)

Arzoumanian+2019 (A&A, 529, L6)

Taurus

tauL1495-070

  tauL1495-160 tauL1495-250 tauL1495-350 tauL1495-500

HGBS_taurusL1495_observed_core_catalog.txt

HGBS_taurusL1495_derived_core_catalog.txt

HGBS_taurusL1495_core_blowups_and_SEDs.pdf

HGBS_taurus_L1495_column_density_map.fits.gz

HGBS_taurus_L1495_hires_column_density_map.fits.gz

HGBS_taurus_L1495_dust_temperature_map.fits.gz

HGBS_taurus_L1495_skeleton_map.fits.gz

Palmeirim+2013 (A&A, 550, A38)

J. Kirk+2013 (MNRAS, 432, 1424)

Marsh et al. 2016 (A&A, 459, 342)

Arzoumanian+2019 (A&A, 529, L6)

Serpens

 

serpens-070

 

  serpens-160

serpens-250

serpens-350 serpens-500

Expected availability: December 2020

Contact: Stefano Pezzuto & Eleonora Fiorellino

HGBS_serpens_column_density_map.fits.gz

HGBS_serpens_hires_column_density_map.fits.gz

HGBS_serpens_dust_temperature_map.fits.gz

Fiorellino et al. 2020, MNRAS

 

 
#66 - Last update : 10/20 2020
|Galerie multim├ędia|liens utiles|plan du site|mentions legales

Mission HERSCHEL

Pourquoi Herschel ?
Pourquoi le spatial ?
Pourquoi les bolomètres ?
Actualités

Évolution des galaxies

Le milieu interstellaire des galaxies
L'Univers lointain et la formation stellaire

Naissance des étoiles

La formation stellaire
La démographie des d'étoiles

Télescope et instruments

L'observatoire spatial
Les bolomètres

Astronomie infrarouge

Détecter l'infrarouge
Scruter l'Univers

Question à un astronome
Galerie multimédia
Liens utiles


Plan du site
Mentions legales

Retour en haut